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A Random Variable is a variable that probabilistically takes on different values. You can think of an RV as
being like a variable in a programming language. They take on values, have types and have domains over
which they are applicable. We can define events that occur if the random variable takes one values that satisfy
a numerical test (eg does the variable equal 5, is the variable less than 8). We often think of the probabilities
of such events.

As an example, let’s say we flip three fair coins. We can define a random variable Y to be the total number
of “heads” on the three coins. We can ask about the probability of Y taking on different values using the
following notation:

• P(Y = 0) = 1/8 (T, T, T)

• P(Y = 1) = 3/8 (H, T, T), (T, H, T), (T, T, H)

• P(Y = 2) = 3/8 (H, H, T), (H, T, H), (T, H, H)

• P(Y = 3) = 1/8 (H, H, H)

• P(Y ≥ 4) = 0

Even though we use the same notation for random variables and for events (both use capitol letters) they
are distinct concepts. An event is a scenario, a random variable is an object. The scenario where a random
variable takes on a particular value (or range of values) is an event. When possible, I will try and use letters
E,F,G for events and X ,Y,Z for random variables.

Using random variables is a convenient notation technique that assists in decomposing problems. There are
many different types of random variables (indicator, binary, choice, Bernoulli, etc). The two main families of
random variable types are discrete and continuous. For now we are going to develop intuition around discrete
random variables.

Probability Mass Function

For a discrete random variable, the most important thing to know is a mapping between the values that the ran-
dom variable could take on and the probability of the random variable taking on said value. In mathematics,
we call associations functions.

The probability mass functions (PMF) is a function that maps possible outcomes of a random variable to the
corresponding probabilities. Because it is a function, we can plot PMF graphs where the x-axis are the values
that the random variable could take on and the y-axis is the probability of the random variable taking on said
value:
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Figure: On the left, the PMF of a single 6 sided die roll. On the right, the PMF of the sum of two dice rolls.

There are many ways that these Probability Mass Functions can be specified. We could draw a graph. We
could have a table (or for you CS folks, a Map) that lists out all the probabilities for all possible events. Or
we could write out a mathematical expression.

For example lets consider the random variable X which is the sum of two dice rolls. The probability mass
function can be defined by the graph on the right of figure . It could have also been defined using the equation:

pX (x) =


x

36 if x ∈ R , 0≤ x≤ 6
12−x

36 if x ∈ R , x≤ 7
0 else

The probability mass function, pX (x), defines the probability of X taking on the value x. The new notation
pX (x) is simply different notation for writing P(X = x). Using this new notation makes it more apparent that
we are specifying a function. Try a few values of x, and compare the value of pX (x) to the graph in figure .
They should be the same.

Expected Value

A relevant statistic for a random variable is the average value of the random variable over many repetitions
of the experiment it represents. This average is called the Expected Value.

The Expected Value for a discrete random variable X is defined as:

E[X ] = ∑
x:P(x)>0

xP(x)

It goes by many other names: Mean, Expectation, Weighted Average, Center of Mass, 1st Moment.

Example 1

Lets say you roll a 6-Sided Die and that a random variable X represents the outcome of the roll. What is the
E[X ]? This is the same as asking what is the average value.

E[X ] = 1(1/6)+2(1/6)+3(1/6)+4(1/6)+5(1/6)+6(1/6) = 7/2
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Example 2

Lets say a school has 3 classes with 5, 10, and 150 students. If we randomly choose a class with equal
probability and let X = size of the chosen class:

E[Y ] = 5(1/3)+10(1/3)+150(1/3)
= 165/3 = 55

If instead we randomly choose a student with equal probability and let Y = size of the class the student is in

E[X ] = 5(5/165)+10(10/165)+150(150/165)
= 22635/165 = 137

Example 3

Consider a game played with a fair coin which comes up heads with p = 0.5. Let n = the number of coin
flips before the first “tails”. In this game you win $2n. How many dollars do you expect to win? Let X be a
random variable which represents your winnings.

E[X ] =

(
1
2

)1

20 +

(
1
2

)2

21 +

(
1
2

)3

22 +

(
1
2

)4

23 + · · ·=
∞

∑
i=0

(
1
2

)i+1

2i

=
∞

∑
i=0

1
2
= ∞

Properties of Expectation

Expectations preserve linearity which means that

E[aX +b] = aE[X ]+b

It also holds in the case where you are adding random variables. Regardless of the relationship between
random variables, the expectation of the sum is equal to the sum of the expectation. For random variables A
and B:

E[A+B] = E[A]+E[B] (1)

There is a wonderful law called the Law of the Unconcious Statistician that is used to calculate the expected
value of a function g(X) of a random variable X when one knows the probability distribution of X but one
does not explicitly know the distribution of g(X).

E[g(X)] = ∑
x

g(x) · pX (x)

For example, lets apply the law of the unconcious statistician to compute the expectation of the square of a
random variable (called the second moment).

E[X2] = E[g(X)] where g(X) = X2

= ∑
x

g(x) · pX (x) by the unconcious statistician

= ∑
x

x2 · pX (x) by the unconcious statistician
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Variance

Expectation is a truly useful statistic, but it does not give a detailed view of the probability mass function.
Consider the following 3 distributions (PMFs) which describe the distribution of grades given to student
assignments by three different graders:

For each distribution we show the “true grade” that the student deserves using a red line. Which of the three
graders would you like to be giving you a grade on your assignment? We can start by eliminating option (c).
This grader, on average, gives a grade that is about 22 percentage points less than the student deserves.

How about grader (a) vs grader (b)? Both distributions have the same expected value but the “spread” of the
two distributions are quite different. Expectation is a useful statistic to know about a random variable, the
next most useful statistic to know is variance, a measure of the spread of a distribution.

How should we turn the idea of spread into a number? The formula for variance asks the question: What
is the expected Euclidean distance between a given grade and the expected grade? In the figure bellow for
a single grader’s accuracy random variable, we show three sample grades that could have been given by the
grader and calculate the Euclidean distance between that grade and the expectation of the distribution (57.5).
The Expectation is simply the weighted average of those distances:
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The variance of a discrete random variable, X , with expected value µ is:

Var(X) = E[(X–µ)2]

When computing the variance often we use a different form of the same equation:

Var(X) = E[X2]−E[X ]2

Intuitively this is the weighted average distance of a sample to the mean.

Variance is especially useful for comparing the spread of two distributions. A larger variance means that
there is more deviation around the mean. However, if you look at the example above, the units of variance
are the square of points. This makes it hard to interpret the numerical value. What does it mean that the
spread is 52 points2? A more interpretable measure of spread is the square root of Variance, which we call
the Standard Deviation SD(X) =

√
Var(X). The standard deviation of our grader is 7.2 points. Under certain

assumptions (that we will get to later in the book) we can make interpretable, mathematical claims about the
standard deviation.

There are many measures that statisticians could have used to quantify spread, and I encourage you at this
point to think of other ways that you could turn random variable spread into a number. Some ideas you
may have come up with could include, how far can you get from the expectation such that there is a 50%
chance that the random variable takes on a value in that range. Variance, as defined above, has been the most
common measure (perhaps because it is easy to calculate), but in another universe we could have developed
an alternate statistic.

Why is it true that E[(X−µ)] = E[X2]−E[X ]2?

Var(X) = E[(X−µ)2] µ is defined to be expectation. Ie µ ≡ E[X ]

= ∑
x
(x−µ)2 pX (x) Law of unconscious statistician

= ∑
x
(x2−2µx+µ

2)pX (x) By algebraic expansion

= ∑
x

x2 pX (x)−2µ ∑
x

xpX (x)+µ
2
∑
x

pX (x) Breaking apart the sum

= E[X2]−2µE[X ]+µ
2 ·1 Law of unconscious statistician

= E[X2]−2µ
2 +µ

2 Recall that: µ ≡ E[X ]

= E[X2]−µ
2

= E[X2]− (E[X ])2
µ ≡ E[X ]

Identities of Variance

A provable identity about variance is that:

Var(aX +b) = a2Var(X)

This (provable) equation claims that if you add a scalar value, b, to a random variable, it will shift the
expectation of the distribution, but the spread around the expectation will be the same. However, if you
multiply your random variable with a scalar, a, it will elongate the spread and the resulting distribution will
have a variance that is a2 times greater.
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Example 1

Let X = value on roll of a 6 sided die. Recall that E[X ] = 7/2. First lets calculate E[X2]

E[X2] = (12)
1
6
+(22)

1
6
+(32)

1
6
+(42)

1
6
+(52)

1
6
+(62)

1
6
=

91
6

Which we can use to compute the variance:

Var(X) = E[X2]− (E[X ])2

=
91
6
−
(

7
2

)2

=
35
12
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